Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular Mycorrhizal Fungal Communities of Native Plant Species under High Petroleum Hydrocarbon Contamination Highlights Rhizophagus as a Key Tolerant Genus.

Identifieur interne : 000561 ( Main/Exploration ); précédent : 000560; suivant : 000562

Arbuscular Mycorrhizal Fungal Communities of Native Plant Species under High Petroleum Hydrocarbon Contamination Highlights Rhizophagus as a Key Tolerant Genus.

Auteurs : Soon-Jae Lee [Suisse] ; Mengxuan Kong [Canada] ; Marc St-Arnaud [Canada] ; Mohamed Hijri [Canada, Maroc]

Source :

RBID : pubmed:32526923

Abstract

Arbuscular mycorrhizal fungi (AMF) have been shown to play an important role in increasing plant fitness in harsh conditions. Therefore, AMF are currently considered to be effective partners in phytoremediation. However, AMF communities in high levels of petroleum pollution are still poorly studied. We investigated the community structures of AMF in roots and rhizospheric soils of two plant species, Eleocharis elliptica and Populus tremuloides, growing spontaneously in high petroleum-contaminated sedimentation basins of a former petrochemical plant (91,000 μg/Kg of C10-C50 was recorded in a basin which is 26-fold higher than the threshold of polluted soil in Quebec, Canada). We used a PCR cloning, and sequencing approach, targeting the 18S rRNA gene to identify AMF taxa. The high concentration of petroleum-contamination largely influenced the AMF diversity, which resulted in less than five AMF operational taxonomical units (OTUs) per individual plant at all sites. The OTUs detected belong mainly to the Glomerales, with some from the Diversisporales and Paraglomerales, which were previously reported in high concentrations of metal contamination. Interestingly, we found a strong phylogenetic signal in OTU associations with host plant species identity, biotopes (roots or soils), and contamination concentrations (lowest, intermediate and highest). The genus Rhizophagus was the most dominant taxon representing 74.4% of all sequences analyzed in this study and showed clear association with the highest contamination level. The clear association of Rhizophagus with high contamination levels suggests the importance of the genus for the use of AMF in bioremediation, as well as for the survey of key AMF genes related to petroleum hydrocarbon resistance. By favoring plant fitness and mediating its soil microbial interactions, Rhizophagus spp. could enhance petroleum hydrocarbon pollutant degradation by both plants and their microbiota in contaminated sites.

DOI: 10.3390/microorganisms8060872
PubMed: 32526923
PubMed Central: PMC7356029


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular Mycorrhizal Fungal Communities of Native Plant Species under High Petroleum Hydrocarbon Contamination Highlights
<i>Rhizophagus</i>
as a Key Tolerant Genus.</title>
<author>
<name sortKey="Lee, Soon Jae" sort="Lee, Soon Jae" uniqKey="Lee S" first="Soon-Jae" last="Lee">Soon-Jae Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne</wicri:regionArea>
<placeName>
<settlement type="city">Lausanne</settlement>
<region nuts="3" type="region">Canton de Vaud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kong, Mengxuan" sort="Kong, Mengxuan" uniqKey="Kong M" first="Mengxuan" last="Kong">Mengxuan Kong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2</wicri:regionArea>
<wicri:noRegion>QC H1X 2B2</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="St Arnaud, Marc" sort="St Arnaud, Marc" uniqKey="St Arnaud M" first="Marc" last="St-Arnaud">Marc St-Arnaud</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2</wicri:regionArea>
<wicri:noRegion>QC H1X 2B2</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hijri, Mohamed" sort="Hijri, Mohamed" uniqKey="Hijri M" first="Mohamed" last="Hijri">Mohamed Hijri</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2</wicri:regionArea>
<wicri:noRegion>QC H1X 2B2</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>AgroBioSciences, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben Guerir, Morocco.</nlm:affiliation>
<country xml:lang="fr">Maroc</country>
<wicri:regionArea>AgroBioSciences, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben Guerir</wicri:regionArea>
<wicri:noRegion>43150 Ben Guerir</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32526923</idno>
<idno type="pmid">32526923</idno>
<idno type="doi">10.3390/microorganisms8060872</idno>
<idno type="pmc">PMC7356029</idno>
<idno type="wicri:Area/Main/Corpus">000257</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000257</idno>
<idno type="wicri:Area/Main/Curation">000257</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000257</idno>
<idno type="wicri:Area/Main/Exploration">000257</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular Mycorrhizal Fungal Communities of Native Plant Species under High Petroleum Hydrocarbon Contamination Highlights
<i>Rhizophagus</i>
as a Key Tolerant Genus.</title>
<author>
<name sortKey="Lee, Soon Jae" sort="Lee, Soon Jae" uniqKey="Lee S" first="Soon-Jae" last="Lee">Soon-Jae Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne</wicri:regionArea>
<placeName>
<settlement type="city">Lausanne</settlement>
<region nuts="3" type="region">Canton de Vaud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kong, Mengxuan" sort="Kong, Mengxuan" uniqKey="Kong M" first="Mengxuan" last="Kong">Mengxuan Kong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2</wicri:regionArea>
<wicri:noRegion>QC H1X 2B2</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="St Arnaud, Marc" sort="St Arnaud, Marc" uniqKey="St Arnaud M" first="Marc" last="St-Arnaud">Marc St-Arnaud</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2</wicri:regionArea>
<wicri:noRegion>QC H1X 2B2</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hijri, Mohamed" sort="Hijri, Mohamed" uniqKey="Hijri M" first="Mohamed" last="Hijri">Mohamed Hijri</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2</wicri:regionArea>
<wicri:noRegion>QC H1X 2B2</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>AgroBioSciences, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben Guerir, Morocco.</nlm:affiliation>
<country xml:lang="fr">Maroc</country>
<wicri:regionArea>AgroBioSciences, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben Guerir</wicri:regionArea>
<wicri:noRegion>43150 Ben Guerir</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microorganisms</title>
<idno type="ISSN">2076-2607</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arbuscular mycorrhizal fungi (AMF) have been shown to play an important role in increasing plant fitness in harsh conditions. Therefore, AMF are currently considered to be effective partners in phytoremediation. However, AMF communities in high levels of petroleum pollution are still poorly studied. We investigated the community structures of AMF in roots and rhizospheric soils of two plant species,
<i>Eleocharis elliptica</i>
and
<i>Populus tremuloides</i>
, growing spontaneously in high petroleum-contaminated sedimentation basins of a former petrochemical plant (91,000 μg/Kg of C10-C50 was recorded in a basin which is 26-fold higher than the threshold of polluted soil in Quebec, Canada). We used a PCR cloning, and sequencing approach, targeting the 18S rRNA gene to identify AMF taxa. The high concentration of petroleum-contamination largely influenced the AMF diversity, which resulted in less than five AMF operational taxonomical units (OTUs) per individual plant at all sites. The OTUs detected belong mainly to the Glomerales, with some from the Diversisporales and Paraglomerales, which were previously reported in high concentrations of metal contamination. Interestingly, we found a strong phylogenetic signal in OTU associations with host plant species identity, biotopes (roots or soils), and contamination concentrations (lowest, intermediate and highest). The genus
<i>Rhizophagus</i>
was the most dominant taxon representing 74.4% of all sequences analyzed in this study and showed clear association with the highest contamination level. The clear association of
<i>Rhizophagus</i>
with high contamination levels suggests the importance of the genus for the use of AMF in bioremediation, as well as for the survey of key AMF genes related to petroleum hydrocarbon resistance. By favoring plant fitness and mediating its soil microbial interactions,
<i>Rhizophagus</i>
spp. could enhance petroleum hydrocarbon pollutant degradation by both plants and their microbiota in contaminated sites.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32526923</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2076-2607</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jun</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>Microorganisms</Title>
<ISOAbbreviation>Microorganisms</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular Mycorrhizal Fungal Communities of Native Plant Species under High Petroleum Hydrocarbon Contamination Highlights
<i>Rhizophagus</i>
as a Key Tolerant Genus.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E872</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/microorganisms8060872</ELocationID>
<Abstract>
<AbstractText>Arbuscular mycorrhizal fungi (AMF) have been shown to play an important role in increasing plant fitness in harsh conditions. Therefore, AMF are currently considered to be effective partners in phytoremediation. However, AMF communities in high levels of petroleum pollution are still poorly studied. We investigated the community structures of AMF in roots and rhizospheric soils of two plant species,
<i>Eleocharis elliptica</i>
and
<i>Populus tremuloides</i>
, growing spontaneously in high petroleum-contaminated sedimentation basins of a former petrochemical plant (91,000 μg/Kg of C10-C50 was recorded in a basin which is 26-fold higher than the threshold of polluted soil in Quebec, Canada). We used a PCR cloning, and sequencing approach, targeting the 18S rRNA gene to identify AMF taxa. The high concentration of petroleum-contamination largely influenced the AMF diversity, which resulted in less than five AMF operational taxonomical units (OTUs) per individual plant at all sites. The OTUs detected belong mainly to the Glomerales, with some from the Diversisporales and Paraglomerales, which were previously reported in high concentrations of metal contamination. Interestingly, we found a strong phylogenetic signal in OTU associations with host plant species identity, biotopes (roots or soils), and contamination concentrations (lowest, intermediate and highest). The genus
<i>Rhizophagus</i>
was the most dominant taxon representing 74.4% of all sequences analyzed in this study and showed clear association with the highest contamination level. The clear association of
<i>Rhizophagus</i>
with high contamination levels suggests the importance of the genus for the use of AMF in bioremediation, as well as for the survey of key AMF genes related to petroleum hydrocarbon resistance. By favoring plant fitness and mediating its soil microbial interactions,
<i>Rhizophagus</i>
spp. could enhance petroleum hydrocarbon pollutant degradation by both plants and their microbiota in contaminated sites.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Soon-Jae</ForeName>
<Initials>SJ</Initials>
<Identifier Source="ORCID">0000-0002-7216-0236</Identifier>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kong</LastName>
<ForeName>Mengxuan</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>St-Arnaud</LastName>
<ForeName>Marc</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0002-7181-9895</Identifier>
<AffiliationInfo>
<Affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hijri</LastName>
<ForeName>Mohamed</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0001-6112-8372</Identifier>
<AffiliationInfo>
<Affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>AgroBioSciences, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben Guerir, Morocco.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>RGPIN-2018-04178</GrantID>
<Agency>Natural Sciences and Engineering Research Council of Canada</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>GenoRem Project</GrantID>
<Agency>Genome Canada and Genome Quebec</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Microorganisms</MedlineTA>
<NlmUniqueID>101625893</NlmUniqueID>
<ISSNLinking>2076-2607</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">PCR</Keyword>
<Keyword MajorTopicYN="N">Petroleum-hydrocarbon contamination</Keyword>
<Keyword MajorTopicYN="N">Rhizophagus</Keyword>
<Keyword MajorTopicYN="N">Ribosomal RNA</Keyword>
<Keyword MajorTopicYN="N">arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="N">cloning and sequencing</Keyword>
<Keyword MajorTopicYN="N">community structure</Keyword>
<Keyword MajorTopicYN="N">extreme environment</Keyword>
<Keyword MajorTopicYN="N">tolerance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>05</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32526923</ArticleId>
<ArticleId IdType="pii">microorganisms8060872</ArticleId>
<ArticleId IdType="doi">10.3390/microorganisms8060872</ArticleId>
<ArticleId IdType="pmc">PMC7356029</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oecologia. 2000 Feb;122(3):435-444</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jul 30;9(8):772</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22847109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2014 Feb;24(2):79-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23900649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2016 Apr;26(3):209-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26403242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2009 Jul-Aug;70(11-12):1421-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19758666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2010 Feb;71(2):169-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20002182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2013 May-Jun;105(3):509-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23233510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Manage. 2016 Dec 1;183(Pt 3):850-863</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27665125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2013 Nov;348(1):46-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23964970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jul 17;9(7):e102838</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25032685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Apr;222(2):1054-1060</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30372538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 May 12;7:685</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27433155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 May;222(3):1584-1598</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30636349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2000 Jun;66(6):2526-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10831433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Dec;220(4):1161-1171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29355972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microorganisms. 2020 Apr 21;8(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32326329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Plant Biol. 2012 Apr;39(3):236-245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32480777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2011 Aug;20(16):3469-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21668808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(23):7537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Sep;78(17):6180-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22752164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jun;72(6):4192-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16751531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Radioact. 2013 Jul;121:22-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22483340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2017 Jan;27(1):13-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27541158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Fungi (Basel). 2020 Jun 16;6(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32560046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Mar;193(4):970-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22150759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Braz J Microbiol. 2011 Jan;42(1):57-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24031605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Oct;188(1):223-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20561207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2019 Oct;29(5):403-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31190278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2017 Nov 15;598:121-128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28437768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Aug 08;8:1381</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28848583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2008 Aug;65(2):339-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18631176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2011 Nov-Dec;29(6):645-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21557996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2016 Sep;18(8):2689-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27376781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2017 Jul;27(5):465-476</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28197735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(371):1177-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11971928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Biotechnol. 2013 Sep 25;30(6):780-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23876814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2015 Jun;362(12):fnv081</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25991810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2012 Apr 12;12:50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22498355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Feb;65(2):718-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9925606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Dec 23;10(12):e0145726</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26698576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2017 Dec 1;599-600:32-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28463699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 May;7(5):189-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>Maroc</li>
<li>Suisse</li>
</country>
<region>
<li>Canton de Vaud</li>
</region>
<settlement>
<li>Lausanne</li>
</settlement>
</list>
<tree>
<country name="Suisse">
<region name="Canton de Vaud">
<name sortKey="Lee, Soon Jae" sort="Lee, Soon Jae" uniqKey="Lee S" first="Soon-Jae" last="Lee">Soon-Jae Lee</name>
</region>
</country>
<country name="Canada">
<noRegion>
<name sortKey="Kong, Mengxuan" sort="Kong, Mengxuan" uniqKey="Kong M" first="Mengxuan" last="Kong">Mengxuan Kong</name>
</noRegion>
<name sortKey="Hijri, Mohamed" sort="Hijri, Mohamed" uniqKey="Hijri M" first="Mohamed" last="Hijri">Mohamed Hijri</name>
<name sortKey="St Arnaud, Marc" sort="St Arnaud, Marc" uniqKey="St Arnaud M" first="Marc" last="St-Arnaud">Marc St-Arnaud</name>
</country>
<country name="Maroc">
<noRegion>
<name sortKey="Hijri, Mohamed" sort="Hijri, Mohamed" uniqKey="Hijri M" first="Mohamed" last="Hijri">Mohamed Hijri</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000561 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000561 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32526923
   |texte=   Arbuscular Mycorrhizal Fungal Communities of Native Plant Species under High Petroleum Hydrocarbon Contamination Highlights Rhizophagus as a Key Tolerant Genus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32526923" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020